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Abstract

This is an expansion of R. Shankar’s derivation (Shankar, 1993) of the Landau Fermi liquid effec-
tive Hamiltonian and its possible BCS instability by applying the renormalization group technique on
a general 2D interacting fermionic system with a circular Fermi surface. I have added a short intro-
duction to the philosophy of renormalisation group. Certain non-trivial arguments and calculations
have also been fleshed out. Where possible, certain parts have been simplified.

1 Short primer on the renormalization group

The philosophy of the renormalization group approach is to integrate out high energy modes from a
microscopic Hamiltonian and observe how the couplings morph in the process. This allows us to write down
a low-energy effective Hamiltonian for the problem which can be used to describe low-energy excitations
as well as universal features which depend on the short-distance details only through a small number of
couplings which are, as a result, termed to be relevant.

Say we have a free energy F , characterized by a scalar field ϕ. The partition function can be written
as a path integral over all configurations of ϕk:

Z =

∫
Dϕ exp {−F(ϕ)} (1)

where

F [ϕ] =

∫ Λ

0

dk f [ϕ(k)] (2)

Let us assume there is a natural momentum cutoff in the problem Λ. There are three distinct steps involved
in the RG procedure:

• Integrate out modes in the range [bΛ,Λ], where b < 1.

• Rescale the momenta to keep the limits unchanged so that we can compare the new partition function
with the previous one: k′ = k

b

• Rescale the fields so as to keep at least one term in the partition function unchanged (usually the
Gaussian term) so that we can compare the changes in the rest of the terms: ϕ′ = λϕ

In a single iteration of the RG, the first step is to reduce the cutoff to bΛ, b obviously being less than
1. To facilitate this, we separate the fields into high momentum and low momentum parts:

ϕ(k) = ϕ<(k) + ϕ>(k) (3)
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where ϕ> is nonzero only for k > bΛ and ϕ< is nonzero in the remaining region.

ϕ>(k) =

{
ϕ(k), bΛ < k < Λ

0 otherwise
,

ϕ<(k) =

{
0, bΛ < k < Λ

ϕ(k), otherwise

(4)

This allows us to write the free energy in the following form:

F [ϕ(k)] = F<[ϕ<] + F>[ϕ>] + F i[ϕ>, ϕ<] (5)

We can now integrate the high momentum modes:

Z =

∫
Dϕ< exp {F<[ϕ<]}

∫
Dϕ> exp

{
F>[ϕ>] + F i[ϕ>, ϕ<]

}
=

∫
Dϕ< Z>[ϕ<] exp {F<[ϕ<]}

(6)

We can now define the remaining integrand as a new effective free energy Fb:

Z =

∫
Dϕ< exp {Fb[ϕ

<]} (7)

where

Fb[ϕ
<] =

∫ bΛ

0

dk fb[ϕ(k)] (8)

Our goal is to compare this partition function with the one in eq. 1. In order to do this, however, we need
to make sure the integral is over the same limits in both cases. The old partition function integrates over
all ϕ, while the new one integrates only up to bΛ. To remedy this, we define new momenta by re-scaling
the old momenta, k′ = k

b
. This will take the limit of integration back to Λ:

Fb[ϕ
<] =

∫ bΛ

0

dk fb[ϕ(k)] =

∫ Λ

0

dk′ fb[ϕ(k
′)] (9)

Z =

∫
Dϕ exp {Fb[ϕ]} (10)

There is one final thing to do. Since an overall scalar factor in the free energy does not make any difference,
we would like to make this explcit by fixing the prefactor of one of the terms in the free energy functional.
This involves scaling the fields ϕ:

ϕ′ = λϕ (11)

With this transformation, the final partition function is

Z =

∫
Dϕ′ exp {Fb[ϕ

′]} (12)

We can now compare the free energies F(ϕ) and Fb(ϕ
′). This will lead to scaling equations for the couplings

that make up the free energy.
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2 Setting up the problem of interacting fermions

The problem we are trying to solve is that of interacting Fermions placed in the two-dimensional continuum.
The Fermi surface will be spherical. The Hamiltonian for the non-interacting system is very simple:

H =

∫
dK E(K)n̂(K) (13)

where E is the single particle dispersion, K is the momentum and n̂ = ψ†ψ is the number operator. Our
goal is to determine what happens when we bring interactions into the problem. The action for the non-
interacting case is determined by calculating the partition function. The partition function turns out to
be

Z =

∫
Dψ†Dψ exp

{∫
dτ dK ψ†

K,σ

(
∂

∂τ
− EK,σ

)
ψK,σ

}
(14)

Using the Fourier transform

ψ(τ) =

∫
dωeiωτψ(ω) , (15)

the action can be expressed as an integral over the energy ω.

S0 =

∫
dτ dK

∫
dωe−iωτψ†

K,σ(ω)

(
∂

∂τ
− EK,σ

)∫
dω′eiω

′τψK,σ(ω
′)

=

∫
dK

∫
dωdω′ψ†

K,σ(ω) (iω
′ − EK,σ)ψK,σ(ω

′)

∫
dτei(ω

′−ω)τ

=

∫
dω dK ψ†

K,σ (iω − EK,σ)ψK,σ

(16)
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We now modify the setup to suit the problem better. The
Pauli exclusion principle ensures that all states up to the
Fermi momentum kF are filled, in the ground state. Ex-
citations, then, involve adding Fermions above the Fermi
momentum and deleting electrons below the Fermi momen-
tum. To this end, we can define an electron at the Fermi
energy EF to have zero energy and measure the energy of
excitations from the Fermi surface: ξK = EK − EF . We
can now specify the cutoff: The only excitations we will be
considering are those that are within a radial distance Λ
from the Fermi surface kF . Since the Fermi surface itself is
spherical, it is easier if we split the momentum vector into
a radial and an angular component:∫

dK =

∫ 2π

0

dθ

∫ ∞

0

dK (17)

The radial component is, by definition, positive. θ as a
result goes from 0 to 2π. The cutoff implies that we will
only consider K ∈ [kF − Λ, kF + Λ].

S0 =

∫ ∞

−∞
dω

∫ 2π

0

dθ

∫ kF+Λ

kF−Λ

dk ψ†
K,σ (iω − ξK)ψK,σ (18)

Since we are only interested in excitations close to the
Fermi surface, we can approximate the single particle en-
ergy as

ξK =
h̄2

2m

(
K2 − k2F

)
=

h̄2

2m
(K − kF ) (K + kF )

≈ h̄2

2m
(K − kF ) 2kF = h̄ (K − kF ) vF

(19)

Choosing units such that vF = h̄ = 1, we get

ξK ≡ EK − EF = K − kF (20)

Since we see that kF is popping up everywhere, we might
as well define k = K − kF . This will reduce each of the
limits by kF :

ξK = k (21)

S0 =

∫ ∞

−∞
dω

∫ 2π

0

dθ

∫ Λ

−Λ

dk ψ†
K,σψK,σ (22)

Figure 1: Left: The intermediate dotted
circle represents the Fermi surface, while
the inner and outer dotted circles represent
the lower and upper cutoffs at kF ±Λ. We
are concerned with the momentum space
region in between the inner and outer dot-
ted circles. Right: Zoom in of a particu-
lar direction of the momentum space. The
yellow region represents the region of mo-
mentum space that will be integrated over,
in each RG step. It extends up to dΛ from
the cutoff Λ.

3 Noninteracting fixed point

As mentioned in the previous section, the first step involves reducing the cutoff and integrating out the
fast modes. Let the reduced cutoff be bΛ, b < 1. We can split the action into high momentum and low
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momentum part:

S<
0 =

∫ ∞

−∞
dω

∫ 2π

0

dθ

∫ bΛ

−bΛ

dk ψ†
K,σ (iω − k)ψK,σ

S>
0 =

∫ ∞

−∞
dω

∫ 2π

0

dθ

∫ [bΛ,Λ]

[−Λ,−bΛ]

dk ψ†
K,σ (iω − k)ψK,σ

(23)

Then,

Z =

∫ ∏
k<bΛ

dψ†
K,σdψK,σe

S<
0

∫ ∏
k>bΛ

dψ†
K,σdψK,σe

S>
0 (24)

Since the modes are decoupled, the result of the high momentum integral does not depend on the low
momentum operators; as a result, we can drop that factor that results from the integration. The next step
involves rescaling the momenta and energy to recover the original limit. This means we should define new
momenta and energy k′, ω′:

k′ =
1

b
k , (25)

ω′ =
1

b
ω . (26)

This will modify the action as

S<
0 =

∫ ∞

−∞
bdω′

∫ 2π

0

dθ

∫ Λ

−Λ

bdk′ψ†
K,σ (ibω

′ − bk′)ψK,σ

=

∫ ∞

−∞
dω′

∫ 2π

0

dθ

∫ Λ

−Λ

dk′ψ†
K,σb

3 (iω′ − k′)ψK,σ

(27)

Since we are only scaling the radial distance, θ will not scale. If we want to compare this new action with
the old action eq. 22, we need to rescale the fields ψ, ψ† to get rid of any global factors. This was the third
step mentioned in the previous section. Its obvious that the following rescaling takes care of the b3 factor:
ψ′
K′ = b

3
2ψK. The final partition function for the reduced cutoff is

Z< =

∫
Dψ′†Dψ′ exp

{∫ ∞

−∞
dω′

∫ 2π

0

dθ

∫ Λ

−Λ

dk′ψ†
K′,σ (iω

′ − k′)ψK′,σ

}
(28)

This is identical to the partition function we started with. This means that the noninteracting
theory is an RG fixed point.

4 Quadratic interaction: tree-level RG

We now introduce quadratic interactions through scatter-
ing via a potential u(k, ω). Owing to momentum conser-
vation, such a term must have the form∫ ∞

−∞
dω

∫ 2π

0

dθ

∫ Λ

−Λ

dk u(K,ω)ψ†
K,σψK,σ (29)

Figure 2: Momentum-
conserving quadratic inter-
action at tree-level

Such a term is diagonal in the momentum and we can again carry out the three re-scaling operations
mentioned previously:

k′ = b−1k (30)

ω′ = b−1ω (31)

ψ′†
k′,σψ

′
k′,σ = b3ψ†

k,σψk,σ (32)
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The interaction term then changes to∫ ∞

−∞
dω′

∫ 2π

0

dθ

∫ Λ

−Λ

dk′ b−1 u(K ′, ω′)ψ′†
K,σψK,σ (33)

We thus see that, as a result of decreasing the cutoff, the interaction potential renormalizes as

u(K,ω) → b−1u(K ′, ω′) (34)

To determine the effect of this, we expand u in a Taylor series around k = 0, ω = 0:

u(K,ω) = u00 + ωu10 + ku01 + ω2u20 + k2u02 + kωu11 + ...

→ b−1u(K ′, ω′) = b−1u00 + b−1b (ω′u10 + k′u01) + b−1b2
(
ω′2u20 + k′

2
u02 + ω′k′u11

)
+ ...

= b−1u00 + ω′u10 + k′u01 + b
(
ω′2u20 + k′

2
u02 + ω′k′u11

)
...

(35)

where umn = (∂mω ∂
n
ku)ω→0,k→0. The various terms scale as follows:

umn → u′mn = bm+n−1umn, b < 1 (36)

The zeroth order term is relevant - it increases as we scale down to low energies. The first order terms
are marginal - they do not change, at least at tree level. Higher terms are irrelevant - they decay upon
renormalization.

Even though the zeroth order term is relevant, such a term already exists in the non-interacting action
- the chemical potential term. Since the energies scale as ω′ = bω, the chemical potential will also scale as
µ′ = bµ. Hence, we can absorb the relevant zeroth order part of the quadratic fluctuation into the chemical
potential:

µeff = µ+ u00 = bµ′ + bu′00 = bµ′
eff (37)

The marginal first order terms are also present in the non-interacting action, and hence can again be
absorbed into those terms. The conclusion is therefore that adding quadratic interactions do not destroy
the non-interacting action, it simply renormalizes certain terms of the non-interacting action.

5 Quartic interaction: tree-level RG

Next we consider quartic interactions. Translational invariance and time-reversal symmetry requires such
scattering events to conserve total momentum and spin:∫

V (1, 2, 3, 4)ψ†
4,σψ2,σ′ψ†

3,σψ1σ′δ(K4 +K3 −K2 −K1)δ(ω4 + ω3 − ω2 − ω1) (38)

where
∫
stands for

∏4
i=1

∫∞
−∞ dωi

∫ 2π

0
dθi

∫ Λ

−Λ
dki . There are now

four sets of variables instead of just one: {(ωi,Ki) : i = [1, 4]}.
V (1, 2, 3, 4) = V ({ωi,Ki}) is the scattering potential and in
general depends on all the momenta and energies. The delta
functions conserve total momentum and total energy. Here, dω
stands for dω1dω2dω3dω4 and dk stands for dk1dk2dk3dk4. The
fields ψiσ = ψKiσ of course depend on the momenta and energies.
We will now try to eliminate one set of variables, say the fourth
set (ω4,K4). We can easily integrate over ω4 by consuming the
energy δ-function. Since all the ωi integrals are independent,
the condition inside the δ-function does not constrain the values
of the remaining ωi.

Figure 3: Tree-level four-
Fermion scattering
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The result of this integration is∫ ∞

−∞
dω1dω2dω3

∫ 2π

0

4∏
i=1

dθi

∫ Λ

−Λ

4∏
i=1

dki V ψ
†
4,σψ2,σ′ψ†

3,σψ1σ′δ(K4 +K3 −K2 −K1) (39)

The fields and V now depend only on the remaining frequencies ω1, ω2 and ω3. We now need to tackle the
other δ-function with the goal of integrating K4. The situation is different from the ωi integral because the
momenta have an additional constraint: they must lie within the annulus [−Λ,Λ]. Merely replacing the
K4 integral with the substitution K4 = K3− (K2+K1) (what we did for ω4) will not work, because there
are combinations of the other three momenta that will then take K4 outside the annulus. One example is
the following combination:

K1 = −kF x̂, K2 = (−Λ + kF ) x̂, K3 = (Λ + kF ) x̂ =⇒ |K4| = 2Λ + kF . (40)

To prevent this, will carry out the integration without any constraint but then multiple the result with
θ(Λ− |k4|) to impose the constraint, where k4 = |K3 − (K2 +K1)| − kF :

3∏
i=1

∫ ∞

−∞
dωi

∫ 2π

0

dθi

∫ Λ

−Λ

dki V (1, 2, 3)ψ†
4,σψ2,σ′ψ†

3,σψ1σ′θ(Λ− |k4|) . (41)

ψ4 depends on K3 − (K2 +K1). The Heaviside function restricts K4 to the proper range.
We need to check how this Heaviside function θ(Λ−|k4|) = θ(Λ−||K3−K2−K1|−kF |) changes under

the scaling. The relevant steps are decreasing the cutoff to bΛ and increasing all momenta ki to ki/b. k4
scales as:

k4 = |K3 −K2 −K1| − kF

= | (kF + k3) K̂3 − (kF + k2) K̂2 − (kF + k1) K̂1| − kF

= | (kF + bk′3) K̂3 − (kF + bk′2) K̂2 − (kF + bk′1) K̂1| − kF

= b

∣∣∣∣(1

b
kF + k′3

)
K̂3 −

(
1

b
kF + k′2

)
K̂2 −

(
1

b
kF + k′1

)
K̂1

∣∣∣∣− 1

b
kF

= b k′4(K
′
i,
kF
b
)

(42)

The Heaviside function therefore scales as

θ(Λ− |k4|) → θ(bΛ− b|k′4|) = θ

(
Λ−

∣∣∣∣k′4(K′
i,
kF
b

)∣∣∣∣) (43)

The final step of rescaling the fields does not affect the Heaviside function in any way. We thus see that
the Heaviside function does not return to its original form; kF has to go to kF/b. In order to remedy this,
we replace the Heaviside function by an exponential decay:

exp

{
−|k4|

Λ

}
(44)

The effect of this exponential decay is similar to the Heaviside function; it suppresses the effect of the k4
that lie outside the allowed region, |k4| > Λ. In the limit of approaching the Fermi surface (Λ → 0), the
exponential takes the form of the Heaviside function:

lim
Λ→0

exp

{
−|k4|

Λ

}
=

{
1, when |k4| < Λ

0, when |k4| > Λ
= θ(Λ− |k4|) (45)
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The quartic term takes the form

3∏
i=1

∫ ∞

−∞
dωi

∫ 2π

0

dθi

∫ Λ

−Λ

dki V (1, 2, 3)ψ†
4,σψ2,σ′ψ†

3,σψ1σ′ exp

{
−|k4|

Λ

}
(46)

To see how this exponential factor scales with the renormalization, note that

k4 = |K3 −K2 −K1| − kF

=
∣∣∣(k3 + kF ) K̂3 − (k2 + kF ) K̂2 − (k1 + kF ) K̂1

∣∣∣− kF

=
∣∣∣kF (

K̂3 − K̂2 − K̂1

)
+ (k3 − k2 − k1)

∣∣∣− kF

(47)

The second term, k3 − k2 − k1, is of order at most Λ, because that is the highest value k4 can take:

(k4)max = kF + |k3 − k2 − k1|max − kF = |k3 − k2 − k1|max

=⇒ |k3 − k2 − k1|max = (k4)max = Λ
(48)

The only situation in which this second term can be comparable to the first term is when both are of order
Λ, but for such values, |k4| will be of the order of kF :

|k4| ∼ |2Λ− kF | ∼ |k4| (49)

Such cases will be suppressed by the exponential factor. Therefore, we can ignore such cases, and assume
that the second term in eq. 47 can always be neglected when compared to the first:

k4 ≈ kF

∣∣∣K̂3 − K̂2 − K̂1

∣∣∣− kF (50)

Under the renormalization, the unit vectors will not scale because they are simply directions on the Fermi
surface and are dimensionless. Therefore,

exp

−

∣∣∣kF ∣∣∣K̂3 − K̂2 − K̂1

∣∣∣− kF

∣∣∣
Λ

 → exp

−

∣∣∣kF ∣∣∣K̂3 − K̂2 − K̂1

∣∣∣− kF

∣∣∣
bΛ


= exp

−

∣∣∣kF ∣∣∣K̂3 − K̂2 − K̂1

∣∣∣− kF

∣∣∣
Λ

(
1 +

b− 1

b

)
=⇒ exp

{
−|k4|

Λ

}
→ exp

{
−|k4|

Λ

}
exp

{(
1− 1

b

)
|k4|
Λ

}
(51)

Therefore, under the renormalization, the exponential gets multiplied by a factor

exp

{(
1− 1

b

)
|k4|
Λ

}
(52)

As Λ → 0+, the argument of the exponential will go to −∞ and the factor will vanish, provided |k4| ≠ 0.

The only terms that will survive are those for which |k4| vanishes:

|k4| ≈ kF

(∣∣∣K̂3 − K̂2 − K̂1

∣∣∣− 1
)
= 0 (53)

=⇒
(
K̂3 − K̂2 − K̂1

)2

= 1 (54)

The only choices of momenta that will survive are the ones in the
directions that satisfy the above equation. To find the possible
angles for that equation, let x̂ ≡ K̂3 and K̂1,2 = cos θ1,2x̂ +

sin θ1,2ŷ. As defined, θ1 is the angle between K̂1 and K̂3, and θ2
is that between K̂2 and K̂3.

Figure 4: The three remaining mo-
menta and angles between them.
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Substituting this in eq. 54 gives

1 + cos θ1 cos θ2 + sin θ1 sin θ2 = cos θ1 + cos θ2

=⇒ 1 + cos (θ1 − θ2) = cos θ1 + cos θ2

=⇒ 2 cos2
θ1 − θ2

2
= 2 cos

θ1 + θ2
2

cos
θ1 − θ2

2

=⇒ cos
θ1 − θ2

2

(
cos

θ1 − θ2
2

− cos
θ1 + θ2

2

)
= 0

(55)

The solutions of this equation are

θ1 − θ2 = ±π and θ1 − θ2 = ± (θ1 + θ2) (56)

Take the first solution. It gives θ1 = θ2 ± π, which in turn means

cos θ1 = cos (π ± θ2) = − cos θ2 (57)

and
sin θ1 = ± sin (π ± θ2) = ±×∓ sin θ2 = − sin θ2 (58)

Combining eqs. 57 and 58, we get
K̂1 = −K̂2 (59)

The second solutions gives θ1 = θ2 ± (θ1 + θ2). The two possibilities are

θ1 = 0, and θ2 = 0 (60)

Since θ1,2 is the angle made by K̂1,2 against K̂3, the two solutions simply mean

K̂1 = K̂3, and K̂2 = K̂3 (61)

The three cases where the momenta might survive are

K̂1 = −K̂2, K̂1 = K̂3, K̂2 = K̂3 (62)

We can now consider the scaling of V ({ki, ωi})(= V ({ki, ωi, θi})) for these three cases only, because the
rest of the cases are irrelevant under RG due to the exponential suppression. Under the process of scaling,

dω1dω2dω3 → b3dω′
1dω

′
2dω

′
3

dk1dk2dk3 → b3dk′1dk
′
2dk

′
3

ψ†
4,σψ2,σ′ψ†

3,σψ1σ′ → b−3ψ′†
4,σψ

′
2,σ′ψ′†

3,σψ
′
1σ′

(63)

The net change is thus no scaling, because the b6 from scaling of dk and dω cancels the scaling of the fields.
Thus, the potential transforms trivially:

V ({ki, ωi, θi}) → V ({ki, ωi, θi}) = V ({bk′i, bω′
i, θi}) (64)

Similar to the quadratic case, we expand the potential around k = 0, ω = 0:

V = V00(θ) + k∂kV01(θ) + ω∂ωV10(θ) +O(2) (65)

where Vmn is defined similar to umn. The zeroth order term V00(θ) scales marginally. The first order terms
scale irrelevantly:

kV01(θ) = bk′V01(θ), b < 1 (66)
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Higher terms will scale more irrelevantly. All the terms with ω and k therefore scale to zero, and we can
work simply with the zeroth order piece which depends only on the angle θ. This is where eq. 62 becomes
important. Not all values of θi are marginal - only those that satisfy eq. 62 are. Assuming we have scaled Λ
down to a small value, the four momenta K1 through K4 must lie on a very thin ring, and they will more or
less have the same values, say K. Then, the momentum conservation condition gives K̂1 + K̂2 = K̂3 + K̂4.
Using eq. 62 along with this momentum conservation equation then gives(

K̂1 + K̂2 = K̂3 + K̂4 = 0
)
,

(
K̂1 = K̂3, K̂2 = K̂4

)
,

(
K̂2 = K̂3, K̂1 = K̂4

)
(67)

First consider the last two cases which are essentially the same, and imply that the incoming momenta
individually match the outgoing momenta. The two separate cases can be obtained simply by permuting
the particles in the potential function. Since the outgoing momenta are individually equal to the incoming
momenta, the potential will depend only on the incoming momenta; the outgoing momenta are fixed
automatically by the incoming momenta.

V ({θi}) = V1(θ1, θ2) (68)

From rotational symmetry, we know that V1(θ1, θ2) = V1(θ1 − θ2, 0) ≡ V1(θ1 − θ2). The conclusion is that
for the last two cases, the potential function takes the form

V1(θ1 − θ2) (69)

on the Fermi surface.
For the first case, we have

V ({θi}) = V2(θ1,−θ1, θ3,−θ3) = V2(θ1 − θ3) (70)

Summarizing, for the two cases in which the momenta can survive on the Fermi surface, we
get two marginal couplings. They are marginal because they are independent of the momenta and
frequency. These two marginal couplings represent the two possible scattering mechanics of the low energy
theory. V1(θ1− θ2) is the forward scattering channel whether the momenta either remain unchanged or get
exchanged, and V2(θ1 − θ3) is the BCS channel where a pair of electrons with zero net momentum scatter
into another pair with zero net momentum.

6 Quartic interaction: 1 loop

We next consider interactions at 1−loop: these processes involve the exchange of virtual particles. In
terms of perturbation theory, these processes refer to the expansion of the T−matrix in the Dyson series:
T = V + V G0V + .... For the quartic interaction, while the tree-level processes correspond to T−matrix
terms of the form

T (1)(ω, 1, 2, 3, 4) = ⟨k3, k4|V (1, 2, 3, 4)ψ†
4ψ(2)ψ

†
3ψ1 |k1, k2⟩ , (71)

the 1−loop terms are of the form

T 2(ω) =
∑
kk′

⟨3, 4|V (k, 2, k′, 4)ψ†
4ψk′ψ

†
3ψkG0(k, k

′)V (1, 2, k, k′)ψ†
kψ2ψ

†
kψ1 |1, 2⟩ . (72)

k and k′ refer to the loop momenta. Each matrix element of V constitutes a vertex of the Feynman
diagram.

10



Figure 5: ZS diagram for quartic interaction. K1 and K3 scatter into K3 and K4 respectively, through the
exchange of virtual particles of momenta K +K1 −K3 and K.

6.1 ZS diagram

The first such diagram is shown in fig. 5. The contribution to the action coming from this diagram is

dV (1, 2, 3, 4) =

∫ ∞

−∞
dω

∫ 2π

0

dθ

∫ Λ

Λ−dΛ

dKV (1, K, 3, K +Q)V (K +Q, 2, K, 4)G0(ω,K)

G0(ω,K +Q)

(73)

K and K + Q are the loop momenta, Q being the transferred momentum. Q is K1 −K3 via momentum
conservation at either vertex. The θ being integrated over refers to the direction of the loop momenta.
Both the θ and K integrals are constrained such that both of the loop momenta lie within the annulus.
G0(ω,K) is the non-interacting Greens function at frequency ω and momentum K:

G0(ω,K) =
1

iω − ξ(K)
(74)

6.1.1 Contribution to V1 from ZS diagram

Consider first the function V1, for which K1 = K3. The momentum transfer Q will be zero, and θ can take
any value from 0 to 2π, because K being on the annulus guarantees that K + Q is also on the annulus.
The contribution then becomes

dV1(1, 2) = 2π

∫ ∞

−∞
dω

∫ Λ

Λ−dΛ

dKV (1, K, 1, K)V (K, 2, K, 2)

(
1

iω − ξ(K)

)2

(75)

Both the poles of the integrand lie in the same half of the complex point, and more specifically at the same
point ω = −iξ(K). This integral will be zero, because the contour can be closed in the other half of the
complex plane, the one that does not have the pole.

6.1.2 Contribution to V2 from ZS diagram

For V2, we have K1 + K2 = K3 + K4 = 0 which means Q can be non-zero, because K1 and K3 are
uncorrelated. Assuming K lies in the positive region [Λ− dΛ,Λ], K +Q must lie either in that region or
the negative region [−Λ,−Λ + dΛ]. The former choice corresponds to small momentum transfer Q ≪ Λ,
and with that choice, the two poles will again be on the same half of the complex plane: ξ(K) ≃ ξ(K+Q).
To get a non-zero contribution, K + Q must lie on the region opposite to K, and this corresponds to a
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large momentum transfer |Q| ∼ kF . The contribution can be written as

dV2(1, 3) =

∫
dθ

∫
dΛ

dK V (1, K, 3, K +Q)V (K +Q,−1, K,−3)∫ ∞

−∞
dω

1

iω − ξ(K)

1

iω − ξ(K +Q)

(76)

The variation in the momenta K and K + Q is now completely in the angle θ. The K−integral can
be taken care of by replacing it with |dΛ|, because that is the width of momentum we are integrating
over, and the variation is now purely in the orientation. The ω-integral can be evaluated by substituting
ξ(K) = −ξ(K +Q) ∼ Λ. With these simplifications, we get

dV2(1, 3) ∼
|dΛ|
Λ

∫
dθV (1, K, 3, K +Q)V (K +Q,−1, K,−3) (77)

The θ−integral has to enforce two constraints: firstly, K +Q and K must lie on opposite annulus so as to
create poles on opposite halves, and secondly, Q has to be of the order of kF to give a non-zero integral.
To find the range of θ that satisfies these two constraints, let us imagine two separate constructions of the
Fermi volume surrounded by the annuli of width dΛ. The first construction is for K while the second one
is for K + Q. Without any constraint, both K and K + Q can take any orientation on the construction,
and the distance between the centers of the two construction when the tips of K and K +Q overlap then
determine the transferred momentum Q. This is shown in fig. 6.

Figure 6: Constructions for the two momenta K and K + Q. The middle thin circle is the Fermi circle,
while the thicker circles represent the annuli of width dΛ. The heads of K and K +Q have been brought
to the same point, the distance between the two centers gives the exchange momentum Q. Rotating K+Q
or K will require us to move the spheres either towards or apart from each other, leading to change in Q.

Varying the orientation of K + Q then leads to various distances between the centers of the two
constructions, and hence to various values of Q. In our case, since Q ∼ kF , we need a specific distance
between the constructions, and hence a specific set of orientations ofK andK+Q. These eight orientations
are shown in fig. 7.

Each intersection region enclosed by the yellow rings subtends an angle of |dΛ|
kF

, so the θ integration is
of the same order. The total integral is therefore of the order of

dV2(1,−1, 3,−3) ∼ |dΛ|
Λ

|dΛ|
kF

V (1, K, 3, K +Q)V (K +Q,−1, K,−3) (78)

The RG equation takes the form

dV2
dt

=
dΛ

kF
V (1, K, 3, K +Q)V (K +Q,−1, K,−3) → 0 (79)

where dt = |dΛ|
Λ
. Since the RHS is infinitesimal, this contribution goes to zero in the continuum limit.
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Figure 7: The same constructions, but the Fermi ring has not been drawn and the annuli have been made
thicker for clarity. The two centers have now been placed at a distance of kF (which is just the radius of
each sphere). The possible combinations of K and K +Q are now given by the intersections of the thick
regions of each construction. There are eight such regions, marked by the yellow circles.

6.2 ZS′ diagram

The ZS ′ diagram is the same as the ZS diagram, except for the fact that the labels 3 and 4 have to be
interchanged. This interchange leads to a minus sign in the expression of the contribution of this diagram:

dV (1, 2, 3, 4) = −
∫ ∞

−∞
dω

∫ 2π

0

dθ

∫
dΛ

dKV (1, K, 4, K +Q)V (K +Q, 2, K, 3)G0(ω,K)G0(ω,K +Q) (80)

where the transferred momentum is now Q = K1 − K4. For either the V1 channel or the V2 channel, Q
need not be zero, because none of the channels correlate K1 with K4. This diagram is therefore similar to
the V2 contribution to the ZS-diagram described in 6.1.2, and it will go to zero for the same reason. We
move on to the final diagram.

6.3 BCS diagram

The final 1-loop diagram for the quartic interaction is
shown in fig. 8. At the bottom vertex, the incoming parti-
cles scatter into two virtual particles. Since the incoming
particles are at zero frequency, the virtual particles have
equal and opposite frequencies ±ω. The momenta are de-
cide by momentum conservation; the virtual momenta have
to add up to K1 +K2. For the V1 channel, the momentum
transfer is again of order kF and the angular integration is
of order dΛ

kF
, making the contribution infinitesimal as in the

previous few cases. For the V2 channel, however, we have
K1 + K2 = 0, which means that the loop momenta are
±K, and for any value of θ, the poles will be on opposite
halves. This means there will not by any suppression of
the θ integral.

Figure 8: BCS diagram.

The contribution from this diagram for the V2 channel is

dV2(1, 3) = −1

2

∫ ∞

−∞
dω

∫ 2π

0

dθ

∫
dΛ

dKV2(1, K)V2(K, 3)G0(ω,K)G0(ω,−K) (81)

The minus sign comes from the fact that we need an odd number of Fermionic flips on the ZS diagram in
order to achieve the BCS diagram. The factor of half arises from the fact that since K is being integrated
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over all values, each pair K,−K will be counted twice.The K−integral again gives a contribution of dΛ,
and the ω−integration gives 1

Λ
:

dV2(θ1 − θ3) = −|dΛ|
2Λ

∫ 2π

0

dθ V2(θ1 − θ)V2(θ − θ3) (82)

To solve this equation, note that since V2 depends only on the angular variable θ1− θ3, it can be expanded
in a series of eimθ, because the exponentials form a complete set:

V2(θ1 − θ3) =
∑
m

vme
im(θ1−θ3)

(83)

If we similarly expand the other V2 and substitute them in the coupling equation, we get∑
m

dvm
dt

eim(θ1−θ3) = −1

2

∫ 2π

0

dθ
∑

m1,m3

vm1vm3e
i(m1θ1−m3θ3)eiθ(m3−m1)

= −1

2

∑
m1,m3

vm1vm3e
i(m1θ1−m3θ3)2πδ (m3 −m1)

= −π
∑
m

v2me
im(θ1−θ3)

(84)

Since the exp {im (θ1 − θ3)} form a linearly independent set, we can compare the coefficients directly and
write down

dvm
dt

= −πv2m =⇒ vm(t) =
1

v−1
m (t0) + π (t− t0)

(85)

The RG equation dvm
dt

= −πv2m shows that as we increase t, vm always decreases, which means that a
positive coupling will renormalize to 0 (irrelevant) while a negative coupling will renormalize to large
negative values (relevant). The former corresponds to a Fermi liquid. The latter is the BCS instability.
We can get an estimate of the BCS energy scale by noting the value of t at which the coupling diverges:

v−1
m (t0) + π (t− t0) = 0 (86)

Noting that t− t0 = ln Λ0

Λ
, the equation gives

Λ = Λ0 exp

(
π

vm(t0)

)
(87)
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