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This is a re-working of R. Rajaraman’s demonstration that the tight-binding dis-

persion can be obtained by treating the problem of electrons moving in a periodic

potential in terms of instantons. This has the advantage that the crystal momentum

can be identified as a topological winding number.

I. SIMPLE DERIVATION OF BLOCH’S THEOREM

For the case of electrons moving in a periodic single-particle potential, the plane wave solutions
get modified simply through a modulation:

ψk,n(x) = eik·xuk,n(x), where uk,n(x) = uk,n(x+ a) (1)

Alternatively,
ψk,n(x+ a) = eikaψk,n(x) (2)

k is called the crystal momentum, and is a good quantum number of the system of free electrons
in a periodic potential. It is not the canonical momentum. The canonical momentum is not
conserved (because of the loss of the continuum translational symmetry). We will now show that
Bloch’s theorem arises very simply because of the periodicity of the lattice.

A single-particle periodic potential in real space can be written as

V =

∫
d

r⃗ V (r⃗) |r⃗⟩ ⟨r⃗| (3)

The momentum-space matrix elements of this operator can be obtained quite easily:

⟨k⃗|V |⃗k′⟩ =
∫

dr⃗ V (r⃗) ⟨k⃗|r⃗⟩ ⟨r⃗|⃗k′⟩ (4)

The real-space wavefuction ⟨r⃗|⃗k′⟩ of the momentum eigenstate |⃗k⟩ is simply a place-wave: ⟨r⃗|⃗k′⟩ =
1√
L
3 eik⃗

′·r⃗. Substituting this gives

⟨k⃗|V |⃗k′⟩ = 1

L3

∫
dr⃗ V (r⃗)ei(k⃗

′−k⃗)·r⃗ (5)

By splitting the position variable into two sub-variables R⃗ and x⃗ as defined in the problem, the
integral takes the form

⟨k⃗|V |⃗k′⟩ = 1

L3

∫
dR⃗ dx⃗ V (R⃗ + x⃗)ei(k⃗

′−k⃗)·(R⃗+x⃗) = (6)

R⃗ takes the positions of the centers of the lattice unit cells, so the periodicity of the lattice ensures
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that V (R⃗ + x⃗) = V (x⃗).

⟨k⃗|V |⃗k′⟩ =
∑
R⃗

ei(k⃗
′−k⃗)·R⃗ 1

L3

∫
dx⃗ V (x⃗)ei(k⃗

′−k⃗)·x⃗ ∼
∑

G⃗∈RLV

δ(k⃗′ − k⃗ − G⃗)V (G⃗) (7)

Since k⃗ and k⃗′ can only scatter only when separated by a reciprocal lattice vector G⃗, it implies

that the states k⃗, k⃗+G⃗, k⃗+2G⃗, . . . for a closed subspace which is decoupled from another subspace

q⃗, q⃗ + G⃗, q⃗ + 2G⃗, . . . when both q⃗ and k⃗ lie within the first Brillouin zone. Each such subspace is

characterised by the momentum k⃗, which is nothing but the momentum modulo G⃗. Therefore, it
is this momentum which is conserved by the scattering processes.

Firstly, from the fact that the momentum modulo G⃗ (a quantity which is referred to as the

crystal momentum, and which we refer to as k⃗) is conserved, we can conclude that it will lead to
a plane-wave part of the wavefuction:

|Ψ⟩k⃗ (r⃗) ∼ eik⃗·r⃗ (8)

Secondly, the periodicity of the lattice requires the wavefuction to have a discrete translation
symmetry. This constrains the form of the remaining part of the wavefuction:

|Ψ⟩k⃗ (r⃗) = eik⃗·r⃗η(r⃗), η(r⃗) = η(r⃗ + a⃗) (9)

This is the most general wavefuction we can write down for an electron in a periodic potential,
and this statement is known as Bloch’s theorem.

II. ENERGY OF LOWEST BAND

Let V (x) be a periodic 1-dimensional potential in which particles of mass m = 1 are moving.

V (x+ a) = V (x) (10)

We can move the coordinate axes such that it’s minima are at x = na, which we take to be 0
(V (na) = 0). Then, expanding V (x) about the minimum at x = 0 gives

V (x) =
1

2
ω2x2 +O(x3) (11)

In the approximation that the second order term dominates over the rest, the local energies are
given by E0 = 1

2
h̄ω. If weak tunneling is allowed, the degeneracy will then be broken. The

degenerate levels will split into bands. Each band forms a tight-binding model, which in second-
quantized notation is

H = E0 − t
∑
j

(
c†jcj+1 + c†j+1cj

)
(12)

The energies for this lowest band are

Ek =
1

2
h̄ω + 2t cos ka (13)

The goal is to derive this last result using instantons.
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III. IMAGINARY TIME AND PATH INTEGRALS

To do that, we will derive an expression for the probability of tunneling from one minimum to
the adjacent one, between times t = −1

2
T and t = 1

2
T :

P(t = −T
2
, x = 0 → t =

T

2
, x = a) = ⟨x = a| e−iT

h̄
H |x = 0⟩ =

∑
n

e−iTEn ⟨x = a|n⟩ ⟨n|x = 0⟩

(14)
|n⟩ are the energy eigenstates with energy En. To extract the lowest energy from the summation,
we switch to an exponentially decaying summation by introducing the Euclidean time: τ = iT .

P(t = −T
2
, x = 0 → t =

T

2
, x = a) =

∑
n

e−τEn ⟨x = a|n⟩ ⟨n|x = 0⟩ (15)

Taking the limit of τ → ∞ should then make just the lowest eigenvalue survive in the summation.

P(t = −∞, x = 0 → t = ∞, x = a) = lim
τ→∞

∑
n

e−τEn ⟨x = a|n⟩ ⟨n|x = 0⟩ (16)

An equivalent expression can be derived by evaluating the inner product ⟨2π| e− τ
h̄
H |0⟩ in an al-

ternative fashion. The process is the same one as used in deriving the path integral form of the
propagator. The details are shown in the appendix. The final result is

⟨x = a| e−
τ
h̄
H |0⟩ =

∫
D [x(τ ′)] exp

(
−SE [x(τ ′)]

h̄

)
(17)

where SE [x(τ ′)] =
∫ τ

2

− τ
2
dτ ′
{

1
2
ẋ2 + V (x)

}
is the Euclidean action and the integration

∫
D [x(τ ′)] is

over all paths x(τ ′) that satisfy x(− τ
2
) = 0 and x( τ

2
) = a. Comparing this equation and eq. 16, we

get our main equation ∑
n

⟨2π|n⟩e−
τ
h̄
En⟨n|0⟩ =

∫
D [x(τ ′)] exp

(
−SE

h̄

)
(18)

IV. THE SADDLE POINT APPROXIMATION AND INTRODUCTION OF THE

INSTANTONS

We will evaluate this integral by invoking the saddle point approximation:∫
dxef(x) ≈

∫
dx exp

(
f(x0) + x2

f ′′(x0)

2

)
= ef(x0)

∫
dx exp

(
x2
f ′′(x0)

2

)
(19)

This assumes that the majority of the contribution to f(x) comes from its minimal configuration
and the quadratic fluctuations. For the present case, this involves retaining only that path x(τ)
for which the Euclidean action is a minimum, and quadratic fluctuations on top of that. In other
words, we are using a semi-classical approximation where we assume that most of the contribution
of the action comes from its classical solution, the path of least action. The minimization condition
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of the action is just the Euler-Lagrange equation, the Euclidean Lagrangian being LE = 1
2
ẋ2+V (x).

0 =
dSE

dx
=

∫
dτ ′
(
∂LE

∂x
− d

dτ

∂LE

∂ẋ

)
=⇒ V ′(x0)− ẍ0 = 0 (20)

x0(τ
′) is the solution that minimizes the action: SE(x0) = S0, and this equation is simply the clas-

sical equation of motion F = ma. The solutions with boundary conditions x(−∞) = 0, x(∞) = a
are called instantons, while those with boundary conditions x(∞) = 0, x(−∞) = a are called
anti-instantons. Instantons are long-lived solutions x(τ ′) of the classical field equations that have
a finite action and are localized in real space.

Using this equation, We can derive a quick relation that will prove useful later. Multiplying
by ẋ0 and integrating over time gives

0 =

∫
dτ ′
[
ẋ0ẍ0 − ẋ0

dV

dx0

]
=

∫
ẋ0dẋ0 −

∫
dV (x0) =

∫ (
d(
1

2
ẋ20)− dV (x0)

)
=⇒ 1

2
ẋ20 − V (x0) = 0

(21)
This is a statement of the conservation of energy. If the particle starts moving from the minima
with zero kinetic energy, its total energy at that point is zero. BY conservation of total me-
chanical energy, the energy has to be zero throughout. The total Euclidean mechanical energy is
EE = −1

2
ẋ2 + V (x).

As an aside, note that since the instantons are defined in the limit of τ → ∞, all instantons
x(τ ′ + τc) that differ from each other by a shift of the center share the same action.

SE[x(τ
′ + τc)] =

∫ ∞

−∞
d(τ ′ + τc)

{
1

2
ẋ2(τ ′ + τc) + V (x(τ ′ + τc))

}
=

∫ ∞

−∞
dτ ′
{
1

2
ẋ2(τ ′) + V (x(τ ′))

}
= SE[x(τ)]

(22)

In other words, if SE[x(τ
′)] = S0, then SE[x(τ

′ + τc)] = S0. This reflects the temporal invariance
of the Lagrangian: the origin of time can be chosen anywhere.

To evaluate the integral, we also need the second derivative of the action. Define q(τ ′) ≡
x(τ ′)− x0(τ

′) as the fluctuation from the path of least action. Expanding SE about x0 gives

SE(x0 + q) =

∫ τ
2

− τ
2

dτ ′
{
1

2
(ẋ0 + q̇)2 + V (x0 + q)

}
= S0 +

∫ τ
2

− τ
2

dτ ′

2

{
q̇2 + q2V ′′(q = 0)

} (23)

V ′′(q = 0) = d2V (x)
dx2 |x=x0 means the second derivative is evaluated on the classical path. The q̇2

term can be changed into a slightly different form for easier manipulation:∫
q̇2 = [q̇q]−

∫
qq̈ (24)
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The first term vanishes because the fluctuation is zero at the boundaries. Therefore, the second
order derivative of SE is

S
(2)
E =

∫ τ
2

− τ
2

dτ ′

2

{
−qq̈ + q2V ′′(q)

}
=

∫ τ
2

− τ
2

dτ ′

2
q

{
− d2

dτ ′2
+ V ′′

}
q

(25)

V. THE QUADRATIC FLUCTUATION OPERATOR AND THE PRESENCE OF

ZERO MODES

Defining an operator O = − d2

dτ ′2
+ V ′′, the total integral can be written as∫

D [x(τ ′)] exp

(
−SE

h̄

)
= e−

1
h̄
S0

∫
D [q(τ ′)] exp

(
−1

h̄

∫ τ
2

− τ
2

dτ ′

2
qOq

)
(26)

The normal modes of the operator O form an orthonormal basis. If these normal modes Xn(τ)
are constructed such that they vanish at the boundaries, they can be used to expand any general
path x(τ) with specific boundary conditions:

x(τ) = x0(τ) +
N∑

n=1

cnXn(τ) (27)

x0(τ) is the classical path and hence satisfies the proper boundary conditions. The integralD [q(τ ′)]
can now be interpreted as the N−dimensional integral over all possible values of the coefficients
{cn}:

D [q(τ ′)] = N
N∏

n=1

dcn (28)

N is a normalization factor. There is a standard identity for evaluating the integral that occurs
on the RHS of 26. ∫

dnx exp

(
−
∑
i,j

xiAijxj

)
= (2π)

n
2 (det A)−

1
2 (29)

∑
i is equivalent to summing over all points τ of a single solution x(τ), while

∫
dnx =

∫
dx1dx2...dxn

integrates over all possible values of the fluctuation at a particular time. Adapting it to our case
gives ∫

D [x(τ ′)] exp

(
−SE

h̄

)
= e−

S0
h̄ B (det O)−

1
2 = e−

S0
h̄ B
(
det
(
−d2τ ′ + V ′′))− 1

2 (30)

B is the weight of the integral that will be calculated later.

Another consequence of the translational invariance of the action is that the operator O will
have a zero eigenvalue. One way of understanding why is the following: qOq measures the ef-
fect, on the action, of small fluctuations away from the path of least action. Typically, since
we are moving away from the minimum of the action, the action will increase and we get a
positive eigenvalue for the fluctuation operator O. However, we know from a previous calcula-
tion that there is at least one type of fluctuation that does not change the action - those that shift
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the entire time range by a constant value τc. These are the fluctuations that lead to the zero modes.

The eigenfunction for this zero mode can also be constructed using this insight. Let x0(τ
′)

be an instanton. Since the zero mode X0(τ) is the result of a shifted axis, we can write

X0(τ) ∝ x0(τ + dτ)− x0(τ) ∝ λ
dx0
dτ

(31)

λ is a normalization factor that is yet to be determined.

1 =

∫
dτ ′xz(τ

′)2 = λ2
∫
dτ ′
(

dx0
dτ

)2

= λ2
∫
dτ ′

[
1

2

(
dx0
dτ

)2

+ V (x0)

]
= λ2S0 (32)

There we used eq. 21 to replace one of the kinetic energy terms with the potential energy. The
normalization factor is 1/

√
S0, S0 being the classical action. The zero eigenfunction is thus

X0(τ) =
1√
S0

dx0(τ)

dτ
(33)

The presence of the zero mode means that the determinant will vanish and the integral over the
zero mode coefficient dc0 will does not exist.

VI. INTEGRATING OVER THE ZERO MODE VIA A COLLECTIVE COORDINATE

One way of taking care of this divergence is by exchanging the variable c0 for the variable τc,
the center of the instanton. To do so, we need the Jacobian J of the transformation between the
two coordinates. Under a change ∆c0, a general function x(τ) changes by

∆x(τ − τc) = ∆

(
x0(τ − τc) +

∑
n

cnXn

)
c0→c0+∆c0

= X0∆c0 (34)

Similarly, under a change ∆τc of the center-coordinate, the function changes by

∆x(τ − τc) = ∆

(
x0(τ − τc) +

∑
n

cnXn

)
τc→τc+∆τc

= (∆x0)τ→τ+τc
=

dx0
dτ

∆τc =
√
S0X0∆τc

(35)
Equating the two changes, we obtain the Jacobian

J ≡ ∆c0
∆τc

=
√
S0 (36)
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The integral over the zero mode can now be evaluated by integrating over τc:∫
D [q(τ ′)] exp

(
−1

h̄

∫ τ
2

− τ
2

dτ ′

2
qOq

)
=

∫
dc0 exp

(
−1

h̄

∫ τ
2

− τ
2

dτ ′

2
X0OX0

)∫ ∏
n̸=0

dcn exp

(
−1

h̄

∫ τ
2

− τ
2

dτ ′

2
XnOXn

)

=
(
det′

(
−d2τ ′ + V ′′))− 1

2 J

∫ τ
2

− τ
2

dτc

= J
(
det′

(
−d2τ ′ + V ′′))− 1

2 τ
(37)

The symbol det′ indicates that the determinant is over the non-zero eigenvalues. The total integral
over the action then returns∫

D [x(τ ′)] exp

(
−SE

h̄

)
= τJe−

S0
h̄ B
(
det′

(
−d2τ ′ + V ′′))− 1

2 (38)

VII. TOTAL CONTRIBUTION FROM A SINGLE INSTANTON

To make further progress, we need to look at the form of the instanton solution. Expanding
the potential V (x0) about its minima x0 = 0 in eq. 21 and looking close to that point gives

1

2
ẋ20 = V (x0) ≈

x20
2
V ′′(0)

=⇒ ẋ0 = −x0ω [V ′′(0) = ω2]

=⇒ x0(τ
′) = e−ωτ ′

(39)

This means that the instanton spends most of its time at the potential wells (0 and 2π), and very
less time (∼ 1

ω
) away from these wells. This time range where the instanton is appreciably away

from the potential minima is decided by the features of the potential (ω), and not the total time
range τ . For most of the time, we will hence have V ′′ = ω2, and for the rest of the time, we will
have some value independent of τ . This allows us to write(

det′
(
−d2τ ′ + V ′′))− 1

2 =
(
det
(
−d2τ ′ + ω2

))− 1
2 K (40)

where K is independent of τ and depends only on the details of the potential. The determinant
reduces to that of the harmonic oscillator potential, and its value is known. From standard
calculations[1], the propagator of the simple harmonic oscillator is known to be

⟨x| eiHT |0⟩ = e
i
h̄
S0

√
ω

2πih̄ sinωT
(41)

Changing to imaginary time gives

B(τ)
(
det
(
−d2τ ′ + ω2

))− 1
2 =

√
ω

2πih̄ sin−iωτ
(42)
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Taking the limit of large τ gives

lim
τ→∞

B
(
det
(
−d2τ ′ + ω2

))− 1
2 =

√
ω

2πh̄1
2
eωτ

=

√
ω

πh̄
e−ωτ (43)

The transition probability due to a single instanton, as obtained from the path integral approach,
over extremely long periods, is hence

P1,0 = lim
τ→∞

√
S0τe

− 1
h̄
S0K

√
ω

πh̄
e−

ω
2
τ (44)

This is the total contribution from a single instanton and zero anti-instantons, hence the subscript
1, 0.

VIII. ALLOWING MORE GENERAL CONFIGURATIONS: THE DILUTE

INSTANTON-GAS APPROXIMATION

We can have solutions with multiple instantons and anti-instantons. Let there be n1 instantons
and n2 anti-instantons. The total distance covered by the instantons will be an1 and that by the
anti-instantons will be −an2. The boundary conditions require that the total distance traveled be
a. Hence, we need

a (n1 − n2) = a =⇒ n1 − n2 = 1 (45)

One thing to note is that a general configuration of instantons and anti-instantons will not min-
imize the action. For closely lying solutions, there will be periods of time where the solutions
will overlap. For example, consider a configuration consisting of an instanton x+0 (τ − τ1) centered
at τ1,followed by an anti-instanton x−0 (τ − τ2 at τ2 and finally another instanton x++

0 (τ − τ3) at
τ3. It is given that τ1 < τ2 < τ3. Such a configuration satisfies the boundary conditions. The
entire configuration is depicted in fig. 1. Their are two stretches of time (drawn in blue) where the

FIG. 1. Configuration of the function over all time. The blue regions in time involve multiple stationary

states overlapping with each other.

configuration of the function is a sum of two stationary solutions. Since the potential V (x) is not
necessarily linear, these superposed functions are not in general solutions of the Euler-Lagrange
equations. We will, however, approach stationary solutions when the solutions become more
separated in time, becoming exact in the limit of τ2 ≫ τ1,become more and more separated.
That is, when τ1 ≪ τ2 ≪ τ3. Then, the total solution will be of the form shown in fig. 2. In
such a configuration we see that at each point, only a single solution enters the minimization
equation. This means that in the limit of τ → ∞, these solutions are possible because then we
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FIG. 2. Configuration of (anti-)instantons that are well-separated in time, and hence producing stationary

states of the action.

will be able to set τ1 ≪ τ2. The only constraint to maintain the boundary condition is n1−n2 = 1.

The total contribution coming from n1 instantons and n2 anti-instantons is

Pn1,n2 =
δn1−n2=1

n1!n2!

[√
S0τe

− 1
h̄
S0K

]n1+n2

√
ω

πh̄
e−

ω
2
τ (46)

Each solution contributes a prefactor
√
S0τe

− 1
h̄
S0 due to the individual integrations over the zero-

modes. Each solution also contributes a factor of K because of the individual regions where they
are not at the boundaries. The remaining stretches along the time axis where the configuration
is near 0 or a, for all (anti-)instantons, will give the harmonic oscillator determinant, which as a
result comes just once. We have also divided by the total number of permutations of the instantons
as well as the anti-instantons, because they are indistinguishable.

This is for a particular pair of values n1 and n2. We can sum over these values to get the
total probability.

⟨x = a| e−
τ
h̄
H |0⟩ =

√
ω

πh̄
e−

ω
2
τ
∑
n1,n2

δn1−n2=1

n1!n2!

[√
S0τe

− 1
h̄
S0K

]n1+n2

(47)

We can change the Kronecker-delta to its Fourier transform.

δn1−n2=1 =

∫ 2π

0

dθ

2π
exp (−iθ(n1 − n2 − 1)) (48)

Define γ =
√
S0τe

− 1
h̄
S0K. The delta Fourier transform gives

⟨x = a| e−
τ
h̄
H |0⟩ =

√
ω

πh̄
e−

ω
2
τ
∑
n1,n2

∫ 2π

0

dθ

2π
exp (−iθ(n1 − n2 − 1))

γn1+n2

n1!n2!

=

√
ω

πh̄
e−

ω
2
τ

∫
dθ

2π
eiθ
∑
n1

(
γe−iθ

)n1

n1!

∑
n2

(
γeiθ

)n2

n2!

=

√
ω

πh̄
e−

ω
2
τ

∫
dθ

2π
eiθ exp (2γ cos θ)

=

√
ω

πh̄

∫
dθ

2π
eiθ exp

(
τ

h̄

[
2h̄
√
S0e

− 1
h̄
S0K cos θ − h̄ω

2

])
(49)
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Comparing with eq. 16,

lim
τ→∞

∑
n

⟨x = a|n⟩e−
τ
h̄
En⟨n|0⟩ = lim

τ→∞

√
ω

πh̄

∫
dθ

2π
eiθ exp

(
−τ
h̄

[
h̄ω

2
− 2h̄

√
S0e

− 1
h̄
S0K cos θ

])
(50)

IX. EXTRACTING THE BAND DISPERSION FROM THE TOTAL PROPAGATOR

For τ → ∞, the left-hand side will be dominated by the smaller values of En, because the
negative exponential will fall very fast for large τ and large En. Those same low-lying energy
levels are found to form a continuous band on the right hand side. The energy states in this lowest
band are parametrised by θ. We can hence write

Elow ≈ Eθ =
h̄ω

2
− 2h̄

√
S0e

− 1
h̄
S0K cos θ (51)

and identity θ as the dimensionless variable ka, and t =
√
S0τe

− 1
h̄
S0K. Eq. 2 can also be reproduced

by this method. From eq. 50, we can write

⟨x = a|k⟩⟨k|0⟩ =
√

ω

πh̄
eika (52)

There we assumed we are at the lowest band and the only remaining quantum number is the
crystal momentum. Now, we have only considered situations where the net effect of the solution
is to go from x = 0 to x = a. If we allowed the instanton to tunnel through N barriers and
reach x = Na, the boundary condition would require n1 − n2 = N . This means the delta
function would become δn1−n2−N . The corresponding Fourier transform would involve the exponent
exp (−ik [n1 − n2 −N ]), so the only change is θ → Nθ. Eq. 52 will then become

⟨Na|k⟩⟨k|0⟩ =
√

ω

πh̄
eiNka (53)

Putting N = 0 gives

⟨0|k⟩⟨k|0⟩ =
√

ω

πh̄
(54)

Dividing eq. 53 by eq. 54 gives
⟨Na|k⟩ = eiNka⟨0|k⟩ (55)

We can interpret ⟨Na|k⟩ = ψk(Na), ⟨0|θ⟩ = ψθ(0). This means

ψk(Na) = eiNkaψk(0) (56)

X. MAPPING THE LATTICE PROBLEM TO THAT ON A CIRCLE: TWISTED

BOUNDARY CONDITIONS

If the particle is placed on a ring with the same periodic potential, the Lagrangian remains
the same, so the local equation of motion satisfied by the solutions remains the same. But the
boundary conditions will change. For the ring, the points x = 0 and x = a are physically the
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same, so we must require
ψ(x) = ψ(x+ a) (57)

From the Bloch theorem (eq. 2), this means we can only have k = 0, which amounts to taking
only the central momentum in the Brillouin zone, per band. Equivalently, from eq. 56, it means
we can only have θ = 0 from the lowest band. Each band thus gets reduced to one state (k = 0 or
θ = 0). To get the other states of the lowest band, we can make a modification to the Lagrangian
which does not change the local physics but changes the boundary conditions. We take the new
Lagrangian

L′
E =

1

2
ẋ2 + V (x) + i

h̄θ

a
ẋ (58)

The extra term is a total derivative (we assume θ is a constant). Since this is a total derivative
term, the local equations of motion will not change. However, as we will see later, θ acts like a
vector potential that couples with the velocity. We know from other standard calculations that
the presence of such a vector potential term can be removed from the Lagrangian (Hamiltonian)
by a large gauge transformation but such a process modifies the boundary conditions: periodic
boundary conditions change into twisted boundary conditions.

ψ(x+ a) = e−iθψ(x) = e−ikaψ(x) (59)

The h̄ is inserted to fix the dimensions. This is just Bloch’s theorem, and these twisted boundary
conditions show that the effect of the total derivative term with a non-zero θ is to introduce the
non-zero values of the crystal momentum into the problem by reproducing Bloch’s theorem.

In the presence of this term, the change to the action is

S ′
E =

∫
dτ ′
{
1

2
ẋ2 + V (x) + i

h̄θ

a
ẋ

}
= SE + ih̄θ

∫
dτ ′

a
ẋ

= SE + ih̄θ

∫ a

0

dx

a

= SE + ih̄θ

(60)

This was for an instanton because we assumed x went from 0 to a. For anti-instanton, we will
have

S ′
E = SE + iθ

∫ 0

a

dx

a
= SE − ih̄θ (61)

The total contribution from n1 instantons and n2 anti-instantons, which previously was e−
S0
h̄
(n1+n2),

now becomes

exp

(
−S0

h̄
(n1 + n2)

)
e−iθ(n1−n2) (62)

One difference from the lattice problem is that here we do not need n1 − n2 = 1. As long as n1

and n2 are integers, the total distance traveled by the solution will be a times some integer which
will always correspond to the point x = 0 = a. This means we can drop the Kronecker delta in
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eq. 47, which now becomes

⟨a| e−
τ
h̄
H |0⟩ =

√
ω

πh̄
e−

ω
2
τ
∑
n1,n2

1

n1!n2!

[√
S0τe

− 1
h̄
S0K

]n1+n2

e−iθ(n1−n2)

=

√
ω

πh̄
e−

ω
2
τ
∑
n1

1

n1!

[
γe−iθ

]n1
∑
n2

1

n2!

[
γeiθ

]n2

=

√
ω

πh̄
e−

ω
2
τ exp (2γ cos θ)

(63)

The new energy levels are thus

Eθ =
h̄ω

2
− 2
√
S0τe

− 1
h̄
S0K cos θ (64)

We are thus able to recover the band by choosing various values of θ.

XI. THE CRYSTAL MOMENTUM AS AN AHARONOV-BOHM FLUX

When we introduced the total derivative term into the Lagrangian, we had mentioned briefly
that the term acts like a vector potential coupling term. Here will make that more concrete. We
can compare the new Lagrangian, eq. 58, to a difference physical setting. Consider a particle on
a ring with a periodic potential, with a constant magnetic field B along ẑ through the center of
the ring. ϕ is the azimuthal coordinate. The Lagrangian for such a charged particle moving in a
magnetic field is given by

L′ = L − eAẋ (65)

where A is the vector potential. For a constant magnetic field, it can be expressed as

A⃗ =
1

2
r⃗ × B⃗ =

1

2
Brϕ̂ =⇒ A(R) =

Φ

a
(66)

Φ = BπR2 is the flux of the magnetic field through the ring, R being the radius. The Euclidean
form of this Lagrangian will absorb the minus sign of the additional term.

−L′
E = −LE − ieA

dx

dτ
=⇒ L′

E = LE + ieA
dx

dτ
(67)

Comparing the two changed Lagrangians, we can see that the total derivative term we introduced
earlier is equivalent to the vector-potential term (and hence the flux Φ).

eA =
h̄θ

a
=⇒ θ =

eΦ

h̄
(68)

We already know that the crystal momentum is given by k = θ
a
. This then gives

k =
eΦ

ah̄
(69)



13

XII. TOPOLOGICAL NATURE OF THE CRYSTAL MOMENTUM

The winding number of the particle trajectories is the number of times the particle completes
the loop. This number is n1−n2, because the instantons traverse the loop in the forward direction,
while the anti-instantons do it in the opposite direction.

W = n1 − n2 (70)

Looking back to the lattice problem, we can recognize this quantity as the number of barriers that
a general configuration tunnels through. This can also be related to a topological charge. The
topological charge of an instanton that has the boundary conditions at x = ±η is

Q ≡ 1

2η

∫
ẋdt =

1

2η
(x(∞)− x(−∞)) (71)

The instantons thus have a topological charge of Q = 1, while the anti-instantons have Q = −1.
These values are topological invariants; a function with a particular topological charge cannot be
smoothly deformed into another. A general configuration of n1 instantons and n2 instantons has a
topological charge of n1−n2. We thus see that the winding number is the topological charge. But
we also know that n1 instantons travel a distance of 2πn1 on the lattice, and n2 anti-instantons
travel −2πn2, so that the total distance traveled on the lattice is 2π (n1 − n2). Since each lattice
spacing is worth 2π, the number of lattice spacing traversed also comes out to be n1 − n2. In this
way, we can see that the winding quantum number is equivalent to the number of lattice spacing
traveled by the instantons.

W = n1 − n2 = Q (72)

From the spectrum of the particle on a circle,

En ∝ (n− Φ

Φ0

)2 (73)

This means that the only values of the flux that keep the physics invariant are integer multiples
of the flux quantum Φ0 =

2h̄
e
. In other words, the flux becomes related to the topological charge

Q. This also places a constraint on the crystal momentum k:

k =
e

ah̄
Φ0Q (74)

It is now clearly seen that the crystal momentum is related to the topological charge. Different
values of the topological charge are obtained from topologically different functions, and lead to
different values of the crystal momentum.

APPENDIX: EVALUATION OF THE INTEGRAL

We divide the time range and position ranges into N slices, each slice of width ∆τ = τ
N

(∆x = 2π
N
). We get a sequence of discrete points, τm = − τ

2
+ m∆τ . Similarly xm = 0 + m∆x.

Obviously τ0 = − τ
2
and τN = τ

2
. Then,

U(
τ

2
,−τ

2
) = e−

τ
h̄
H =

N−1∏
m=0

U(τm + 1, τm) (75)
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The term Um ≡ U(τm, τm+1) can be approximated as

Um = exp

[
−∆τ

h̄
(H0 + V )

]
= e−

∆τ
h̄

H0e−
∆τ
h̄

V
[
1 +O(∆τ 2)

]
≈ e−

∆τ
h̄

H0e−
∆τ
h̄

V

(76)

Noting that
∫
dxm |xm⟩ ⟨xm| = 1, we can write the following.

⟨2π| e−
τ
h̄
H |0⟩ =

N−1∏
m=0

⟨2π|U(τm, τm+1) |0⟩ =
0∏

m=N−1

∫ ∞

−∞
dxm ⟨xm+1|U(τm, τm+1) |xm⟩ (77)

The mth inner product can be evaluated easily.

⟨xm+1|U(τm, τm+1) |xm⟩ = ⟨xm+1| exp
(
−∆τ

h̄
H0

)
|xm⟩ exp

(
−∆τ

h̄
V (xm)

)
= M exp

(
−1

2h̄∆τ
(xm+1 − xm)

2

)
exp

(
−i∆τ

h̄
V (xm)

)
= Mexp

[
−∆τ

h̄

{
1

2

(
xm+1 − xm

∆τ

)2

+ V (xm)

}] (78)

M is a factor that will be absorbed later so we won’t bother with it. Now we take the limit of
N → ∞. This makes

τm → τ ′ (79)

∆τ → dτ ′ (80)

xm(τm) → x(τ ′) (81)

xm+1 − xm = ∆xm(τm) → dx (82)

We thus get the following in that limit.

⟨xm+1|U(τm, τm+1) |xm⟩ = Mexp

[
−dτ ′

h̄

{
1

2
ẋ2 + V (x)

}]
(83)

where ẋ = dx(τ ′)
dτ ′

. The final result is

⟨2π| e−
τ
h̄
H |0⟩ =

∫ ∞

−∞

0∏
m=N−1

dxmMN exp

(
−1

h̄

∫ τ
2

− τ
2

dτ ′
{
1

2
ẋ2 + V (x)

})

=

∫
D [x(τ ′)] exp

(
−SE [x(τ ′)]

h̄

) (84)

[1] Sakurai 1994, eq. 2.5.18.
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