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This is a very short introduction to the philosophy and algorithm of dynamical

mean field theory (DMFT). I brought these points together and wrote this up mostly

to cement my own understanding of the topic. I first discuss the Curie-Weiss mean

field theory in the context of the Ising model in order to provide a familiar language,

and set up in a slightly different way so that it is easily generalised to DMFT. This

might be useful for anyone wanting to know, in brief, what DMFT is, and how it is

implemented.
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I. REFRESHER ON (STATIC) MEAN FIELD THEORY

The Curie-Weiss version of mean field theory involves replacing the spatial fluctuations in the
Hamiltonian or the energy by an effective static field. The static field has to be determined self-
consistently. To see what this means, we take the canonical example of the Ising model. Its
Hamiltonian is given by

H = J
∑
⟨ij⟩

Sz
i S

z
j = J

∑
i

Sz
i

∑
j∈NN of i

Sz
j (1)

In order to introduce the mean-field, we replace the spins Sz
j of the nearest-neighbour sites by

their average value
〈
Sz
j

〉
≡ mj:

HMF = J
∑
i

Sz
i

∑
j∈NN of i

mj (2)

Because of translation symmetry, we expect the average local magnetisation to be independent of
the position j: mj ≡ mloc. If z is the coordination number of the lattice, we get

HMF = J
∑
i

Sz
i zm = hMF

∑
i

Sz
i , (3)

where we have defined the static mean field hMF ≡ Jzmloc. This mean field Hamiltonian is
solvable, in terms of hMF. The mean-field itself, however, is still unknown. To determine it, we
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will use the fact that if our approach is to be internally consistent, the average magnetisation ⟨Sz
i ⟩

obtained from the mean-field Hamiltonian HMF should be equal to that defined before, mloc. This
is again demanded on grounds of translation invariance. Since HMF just consists of decoupled
spins, the local Hamiltonian has two solutions: Sz

i = ±1
2
with energies ±hMF

2
. The local partition

function ZMF and hence the magnetisation at site i is then obtained easily:

ZMF = 2 cosh (βhMF/2) ,m =
1

ZMF

∑
Sz
i =± 1

2

Sz
i e

−βhMFS
z
i = tanh (βhMF/2) (4)

The self-consistency equation takes the form

mloc = m = tanh (βJzmloc/2) (5)

This equation now has to be solved numerically, to obtain the value of the local magnetisation
mloc.

Even though this approach to obtaining the local magnetisation works for the Ising model, it is
not very general; for a more complicated Hamiltonian, it will not be possible to solve it analytically
and obtain an explicit self-consistency equation. We will therefore re-implement mean-field theory
on the Ising model but now using a different approach, one that can be generalised to other models.
This new approach involves the following steps:

1. Assume some initial guess value of mloc.

2. Assume the mean-field form of the Hamiltonian, HMF in terms of the chosen mloc.

3. Solve this Hamiltonian to obtain a local magnetisation m.

4. Take this as the updated value of mloc: mloc = m, and construct a new Hamiltonian HMF

using the updated mloc.

5. Restart from step 3.

The idea is that we start with a guess value of the environment local magnetisation mloc and solve
the Hamiltonian with this mean-field to obtain a value for the local magnetisation, m. These
values will most probably not satisfy m = tanh βJzmloc/2, because we guess the value of mloc.
In order to get closer to the self-consistent value, we update mloc by setting it equal to the value
of m computed in the last step. We then solve the Hamiltonian with this updated value of mloc

to obtain a new value of m, and these values will be closer to the self-consistent value. We keep
doing this until we converge to the self-consistent value. This is shown in Fig. 1.

The more general approach to applying the mean field approximation can therefore be for-
malised as follows:

• Figure out what the mean field y is. Construct a self-consistency equation out of it. It
can be of the following form: y = f(y), or more generally a set of coupled equations:
y = f1(y1), y1 = f2(y2), . . . fn(yn) = y.

• Replace the fluctuations by an effective local mean field f(y), in order to obtain a simpler
problem (the simplified Hamiltonian HMF).

• Solve the simpler problem at a particular local site i by starting with some guess value of
f(y), to calculate the mean field y′ from it.
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FIG. 1. Convergence of the local magnetisation to the self-consistent value (horizontal solid line) after

repeatedly solving the Hamiltonian and updating it with the solution, with βJz = 2.1. Two examples

are shown, one with the initial value minit greater than the final value, the other less than the final value.

Both converge within 90 runs.

• Create an updated Hamiltonian by setting y = y′.

• Solve this new Hamiltonian to obtain yet another updated y′, and keep repeating this until
y does not change.

II. DYNAMICAL MEAN FIELD THEORY - WHAT’S THE BIG IDEA?

Dynamical mean field theory (DMFT), and mean field theory in general, falls in the class of
auxiliary model methods. Such methods, very broadly, convert a bulk lattice model into the sum
of a correlated impurity term and a simplified bath term that interacts with the impurity:

Hfull =
∑
i

Hloc(i) +
∑

{i,j,...}

Hnon-loc ({i, j, . . .}) ≃
∑
i

[Hloc(i) +Hbath(i)] . (6)

The problem is then reduced to solving the impurity model Hloc(i) + Hbath(i). Various approx-
imations typically go into converting the fully-interacting part Hnon-loc ({i, j, . . .}) into the bath
Hamiltonian Hbath(i), in order to make the impurity Hamiltonian tractable. In the case of the
Ising model discussed in Section I, there was no purely local term in the Hamiltonian, so Hloc(i)
was identically zero. The non-local term was the Ising term itself: Hnon-loc ({i, i+ 1}) = JSz

i S
z
i+1,

which we simplified into Hbath(i) = hMFS
z
i .

In DMFT, we cast the full interacting problem into the form of an impurity problem with a
self-consistently determined bath:

Gloc =
1

ω − Σ0 − t2Gloc
(7)

This is the expression for the local lattice Greens function (under certain approximations which
will be discussed below and which are central to the idea of DMFT), and it can be thought of
as the impurity Greens function of a single impurity Anderson model. The self-consistent nature
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stems from the fact that the non-interacting Greens function of the impurity problem (determined
by interactions with the bath) is given by t2Gloc, where Gloc is also the final complete impurity
Greens function. The problem then boils down to solving the mean field Gloc in a self-consistent
fashion.

III. DERIVATION OF THE DMFT SELF-CONSISTENCY EQUATION FOR THE

HUBBARD MODEL

In DMFT, we adopt the local Greens function as our mean field. In general, the Greens function
Gi(ω) at a particular site i is a complicated object. For the case of the Hubbard model at zero
chemical potential, the Hamiltonian takes the form

HHUB = −t
∑
⟨i,j⟩,σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓ . (8)

By identifying, say, the zeroth site of the lattice, the Hamiltonian can be formally separated into
three parts:

HHUB = U
∑
i

n̂0↑n̂0↓︸ ︷︷ ︸
H0

+(−t)
∑
⟨0,i⟩,σ

(
c†iσc0σ + h.c.

)
︸ ︷︷ ︸

H0−rest

+U
∑
i ̸=0

n̂i↑n̂i↓ − t
∑

⟨i,j⟩≠0,σ

(
c†iσcjσ + h.c.

)
︸ ︷︷ ︸

Hrest

.
(9)

The three parts are

• H0: the Hamiltonian with all sites except site 0 removed,

• Hrest: the Hamiltonian with site 0 removed, and

• H0−rest: the remaining part, representing the link between the first two parts.

Let G be the real-space Greens function of the system defined by Hrest. The local Greens function
G0(ω) of site 0 arising from the full Hamiltonian can be written as the sum of a “non-interacting”
part G0 due to one-particle hopping into the system characterised byHrest, and a self-energy arising
out of the local correlation U at site 0:

(1/G0) = (1/G0)− Σ0(ω) . (10)

G0 can be thought of as the local Greens function of the site 0 in the absence of the local correlation

at that site, but in the presence of the correlation on the other sites. Calculating G
(0)
0 is therefore

is at least as hard as solving the original problem. All this is still pretty standard and exact,
and no simplification has been made. We can express the Greens function G0 in terms of its own
self-energy Σrest:

1/G0 = ω − Σrest (11)

Note that G0 represents the spectral weight of an electron hopping from the uncorrelated site 0
into the rest of the (correlated) lattice, and will therefore involve the hopping parameter t and the
interacting Greens function G of Hrest. With this in mind, we can express the self-energy Σrest as
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a vertex expansion in G:

Σrest =t2
∑
⟨0,ij⟩

∫
dτ

〈
To

(
c†iσ(τ)cjσ(0)

)〉
+ t4

∑
⟨0,i1j1i2j2⟩

∫
dτ1dτ2

〈
To

(
c†i1σ(τ1)c

†
i2σ

(τ2)cj1σ(0)cj2σ(0)
)〉

+ . . .+ t2n
∑

⟨0,i1...inj1...jn⟩

∫
dτ1 . . . dτn

〈
To

(
c†i1σ(τ1) . . . c

†
inσ

(τn)cj1σ(0) . . . cjnσ(0)
)〉

+ . . .

=t2
∑
⟨0,ij⟩

∫
dτG (i : j; τ : 0) + t4

∑
⟨0,i1j1i2j2⟩

∫
dτ1dτ2G (i1, i2 : j1, j2; τ1, τ2 : 0, 0) + . . .

+ t2n
∑

⟨0,i1...inj1...jn⟩

∫
dτ1 . . . dτnG (i1 . . . in : j1 . . . jn; τ1 . . . , τn : 0 . . . , 0) + . . . ,

(12)
where T0 is the time-ordering operator, andG (i1 . . . in : j1 . . . jn; τ1 . . . , τn : 0 . . . , 0) is the 2n−point
correlation function. All real-space indices i1 through in and j1 through jn are summed over the
real-space neighbours of 0. By going to frequency-domain, we get

Σrest =t2
∑

⟨0,i1j1⟩

Gi1:j1(ω1) + t4
∑

Gi1,i2:j1,j2(ω1, ω2) + . . .+ t2n
∑

Gi1...in:j1...jn(ω1, . . . ωn) + . . .

(13)
We now introduce the first approximation. In the limit of large dimensionality d, Metzner and
Vollhardt have shown that the sensible way to scale the Hamiltonian is to replace t → t/

√
d.

Muller-Hartmann have then showed that in the vertex expansion of Eq.13, only the purely local
term Gi1;i1 is of order 1, while all subsequent terms vanish at least as 1/d, such that they do not
contribute. This simplifies the calculation enormously:

Σrest(ω) ≃
(
t2/d

)∑
⟨0,i⟩

Gi:i(ω) = t2Gloc(ω) (14)

where we have defined Gloc ≡ Gi;i as the interacting local Greens function of the “rest” system.
Substituting this into G0 and then into G0 gives

G0 =
1

ω − t2Gloc(ω)− Σ0(ω)
(15)

Because of translation invariance, we expect the local Greens function of site 0 to be the same as
the local Greens function of the ”rest” system: G0 = Gloc, leading to a self-consistent equation in
G0

G0 =
1

ω − t2G0(ω)− Σ0(ω)
. (16)

This should be recognisable as the Greens function of an Anderson impurity embedded in a
conduction bath.

IV. THE ALGORITHM OF THE SELF-CONSISTENCY LOOP

The equations are now in place, and the only thing that is left is to solve the equation self-
consistently. This is where the alternate formulation of the Ising model solution (described at the
end of the first section) is useful. We will use a similar approach here to obtain the mean field in
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an iterative fashion. This method is often referred to as the self-consistency loop. It involves the
following steps:

• Create an Anderson impurity model defined by the parameters U and some initial guess of
Gloc. U fixes the impurity on-site correlation and Gloc sets the non-interacting local Greens
function, G−1 = ω − t2Gloc.

• Obtain the local impurity Greens function G0 using some solver like IPT, NRG, C-TQMC,
etc, and hence the impurity self-energy Σ0 = G−1

0 − G−1
0 . By self-consistency, this should

also be the local self-energy of the rest of the system: Σ0 = Σi.

• As mentioned before, in infinite dimensions, all non-local contributions to the self-energy

vanish, leading to a k−independent self-energy: Σ(k⃗, ω) =
∑

r⃗ e
ik⃗·r⃗Σ(r⃗, ω) ≃ Σ(r⃗ = 0, ω) =

Σi(ω). We can therefore calculate the lattice self-energy from the impurity model solution:

Σ(k⃗, ω) = G−1
0 − G−1

0 . This is used to construct a new local lattice Greens function Gloc =∑
k⃗ Gk⃗ =

∑
k⃗

(
ω − ϵk⃗ − Σ(k⃗, ω)

)−1

• Using U and the updated Gloc, one can repeat all the previous steps. This is continued until
the input Gloc and the output Gloc converge into each other.

The simplification of Eq. 13 that removed the non-local corrections was necessary in order to
reduce the problem to that of just one unknown Gloc, so that just one one self-consistency equation,
G0 = Gloc, would be sufficient. If not for that, there would have been more unknowns like Gij, Gijkl

and so on, and just one equation to solve them, which is of course impossible. This simplification

has the consequence that the lattice self-energy Σ(k⃗, ω) has no k−dependence, a feature that holds
only in infinite dimensions.
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