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This is a quick introduction to the tight-binding problem on a 2D square lattice.

I describe how it can be obtained from a more general model, its solution and some

of its important properties like the isoenergetic contours and van Hove singularities.

I. SINGLE-PARTICLE HAMILTONIAN VIEWPOINT

This method deals with the situation in which the local atomic orbitals are a good approxi-
mation to the full problem, and fairly good solutions can be obtained by adding corrections to
the local wavefunctions. We start by separating the full Hamiltonian into a local and a non-local
piece:

H =
∑
i

Hi +Hnloc (1)

Hi is an operator that acts only very close to the real space lattice site i, and is zero otherwise. A
very extreme and simple example would be a chemical potential term:

Hi = µ
∑
σ

n̂iσ (2)

where n̂iσ = c†iσciσ is thee number operator for the ith site. A more non-trivial example would be
an extremely localised Coulomb repulsion term:

Hi = Un̂i↑n̂i↓ (3)

The non-local piece Hnloc connects multiple sites. A simple example of such a term would be a
nearest-neighbour hopping:

Hnloc = −t
∑
iσ

(
c†iσci+1,σ + h.c.

)
(4)

In general, let {|Ψn
i ⟩} be the set of eigenstates of the local Hamiltonian Hi:

Hi |Ψn
i ⟩ = En

i |Ψn
loc⟩ (5)

We will drop the superscript i on the energy eigenvalue because they are actually independent of
i on account of translation invariance. We assume that all the ψn

i (r⃗ − R⃗i) are very local; that is,

they are non-zero only very close to their specific lattice sites
(
r⃗ − R⃗i ∼ 0

)
. More specifically, we

assume that ψn
i (r⃗) becomes zero when Hnloc(r⃗ − R⃗i) is non-zero. In such a situation, ψn

i (r⃗ − R⃗i)
becomes a very good wavefunction of the full Hamiltonian:

H(r⃗)ψn
i (r⃗ − R⃗i) =

[∑
i

Hi(r⃗) +Hnloc(r⃗)

]
ψn
i (r⃗ − R⃗i)

=

{
Hi(r⃗)ψ

n
i (r⃗ − R⃗i) = Enψn

i (r⃗ − R⃗i) when r⃗ ∼ R⃗i

Hnloc(r⃗)ψ
n
i (r⃗ − R⃗i) = 0 otherwise

(6)
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However, these wavefunctions do not satisfy Bloch’s theorem. The following linear combination
does:

ϕn(k⃗) =
1√
N

∑
i

eik⃗·R⃗iψn
i (r⃗ − R⃗i) (7)

because it can be rewritten as

ϕn(k⃗) =
1√
N
eik⃗·r⃗

∑
i

e−ik⃗·(r⃗−R⃗i)ψn
i (r⃗ − R⃗i) = eik⃗·r⃗un

k⃗
(r⃗) (8)

such that un
k⃗
(r⃗) is translationally-invariant. The energy expectation values are

ξk⃗ = ⟨Φn
k⃗
|H |ϕn

k⃗
⟩ = 1

N

∑
ij

eik⃗·(R⃗i−R⃗j) ⟨Ψn
i |H |Ψn

j ⟩ (9)

At this point we assume that the Hamiltonian has non-zero matrix elements for local and, at the
most, nearest-neighbour terms:

⟨Ψn
i |H |Ψn

j ⟩ = αδij + γδ|i−j|−1 (10)

This gives

ξk⃗ = α + γ
∑
e⃗i

eik⃗·e⃗i (11)

e⃗i runs over all vectors that connect a lattice site to its nearest neighbours. For a hypercubic
lattice with spacings a1, a2, ..., the expression becomes

ξk⃗ = α + 2γ
∑

i=x,y,...

cos aiki (12)

II. SECOND-QUANTIZED HAMILTONIAN VIEWPOINT

The tight-binding model can also be developed starting from a second-quantized Hamiltonian.
Here we work with field operators:

ck⃗, c
†
q⃗ :
{
ck⃗, c

†
q⃗

}
= δkq (13)

i, j are some quantum numbers. For example, c†(r⃗) creates an electron at position r⃗.

The assumption of at most nearest neighbour Hamiltonian matrix elements naturally leads to
the model

H = −t
∑
⟨ij⟩,σ

(
c†iσcjσ + h.c.

)
− µN̂ (14)

c†iσ is the Fermionic field operator that creates an electron with spin σ at R⃗i. Defining the Foureir
transforms as

c†
k⃗σ

=
1√
N

∑
i

ek⃗·R⃗ic†iσ, c†iσ =
1√
N

∑
i

e−k⃗·R⃗ic†
k⃗,σ (15)
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Using this, we can write

H = −t 1
N

∑
⟨ij⟩,σ

∑
k⃗q⃗

(
ei[k⃗·R⃗i−q⃗·R⃗j]c†

k⃗σ
cq⃗σ + h.c.

)
− µN̂

= −t 1
N

1

2

∑
i

∑
j∈NN of i

∑
k⃗q⃗

∑
σ

(
ei[k⃗·R⃗i−q⃗·R⃗j]c†

k⃗σ
cq⃗σ + h.c.

)
− µN̂

(16)

We assume here that we are on a 2D lattice. Since j sums over all NN of i, we can substitute∑
j

e−iq⃗·R⃗j = e−iq⃗·(R⃗i+a⃗x) + e−iq⃗·(R⃗i−a⃗x) + e−iq⃗·(R⃗i+a⃗y) + e−iq⃗·(R⃗i−a⃗y)

= 2e−iq⃗·R⃗i (cos(qxax) + cos(qyay))

(17)

This gives

H = −t 1
N

1

2

∑
k⃗q⃗,σ

[
2 (cos(qxax) + cos(qyay)) c

†
k⃗σ
cq⃗σ + h.c.

]∑
i

ei(k⃗−q⃗)·R⃗i − µN̂

= −t 1
N

∑
k⃗q⃗,σ

(cos(qxax) + cos(qyay))
(
c†
k⃗σ
cq⃗σ + h.c.

)
Nδk⃗,q⃗ − µN̂

= −2t
∑
k⃗,σ

(cos(kxax) + cos(kyay)) c
†
k⃗σ
ck⃗σ − µN̂

=
∑
kσ

ξkn̂kσ

(18)

with ξk = −2t (cos(kxax) + cos(kyay))− µ. The bandwidth is 8t.

III. CONSTANT-ENERGY CONTOURS

The contours of constant energy E are defined by

ξk = E (19)

The Fermi surface is defined as the set of points in k−space on the contour at zero energy:

ξk = 0 =⇒ cos(kxax) + cos(kyay) = − µ

2t
(20)

The case of µ = 0 results in a ”diamond-shaped Fermi surface”:

cos(kxax) + cos(kyay) = 0

=⇒ cos(±kxax) = cos(π ± kyay)

=⇒

{
kx + ky =

π
a

kx − ky =
π
a

,

{
−kx + ky =

π
a

−kx − ky =
π
a

(21)
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FIG. 1: Contours of zero energy (Fermi surface) on the 2D tight-binding lattice model, at
multiple values of the filling.

IV. THE CASE OF HALF-FILLING

The case of µ = 0 is often referred to as half-filling, because
at this parameter value, the Hamiltonian is particle-hole
symmetric. This means that the Hamiltonian remains in-
variant under a particle-hole transformation. To see this
on the 2D lattice, we visualize the lattice as the sum of
two sub-lattices, A and B. A site on sublattice A (pink in
figure) only has sites of sublattice B (green in figure) as its
nearest-neighbour, and vice-versa. We will represent the
Fermionic operators for sublattice A with a, a† ad those of
sublattice B with b, b†. With this in mind, the tight-binding
Hamiltonian can be written as

H = −t
∑
i∈A

∑
j∈NN of i

∑
σ

(
a†iσbjσ + h.c.

)
− µN̂ (22)

FIG. 2: 2D lattice composed of
two sublattices.

Now we define a particle-hole transformation a → a†, b → −b†. The hopping part remains
unchanged by this transformation:

a†iσbjσ + b†jσaiσ → −aiσb†jσ − bjσa
†
iσ = a†iσbjσ + b†jσaiσ (23)

The total number part transforms as

µN̂ = µ

(∑
i∈A,σ

a†iσaiσ +
∑
j∈B,σ

b†jσbjσ

)
→ −µN̂ + constant (24)
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This term will be invariant when

µN̂ = −µN̂ =⇒ µ = 0 (25)

V. ELECTRONIC DIFFERENTIATION AND NESTING AT HALF-FILLING

The half-filled Fermi surface has two sets of high-symmetry
points. The points at the four corners are referred to as the
antinodal points, while those at the centers of the four arms are
referred to as the nodal points. The dispersion behaves differ-
ently near the two sets of points: near the nodes, it is massless
Dirac-like, while near the antinodes, it becomes hyperbolic.

antinodes → (akx, aky) =

{
(0, π) , (π, 0)

(0,−π) , (−π, 0)
, nodes → (akx, aky) =

{(
π
2
, π
2

)
,
(
−π

2
,−π

2

)(
π
2
,−π

2

)
,
(
−π

2
, π
2

)
The dispersion ϵk = −2t (cos(kxax) + cos(kyay)) near the nodes and antinodes can be obtained

by expanding the cosines in Taylor series about those points. Near the nodes, we have

ak ∼ π

2
=⇒ cos(ak) ∼

(
ak − π

2

)
(−1) (26)

which gives
ϵk|node ∼ 2t (axkx + ayky) (27)

The dispersion becomes linear near the nodes. Near one of the antinodes, we have kxax ∼ π, kyay ∼
0, so

cos(axkx) ∼ −1 +
1

2
(π − axkx)

2

cos(ayky) ∼ 1− 1

2
(ayky)

2
(28)

such that
ϵk|antinode ∼ t

[
(ayky)

2 − (π − axkx)
2] (29)

which shows that the dispersion becomes hyperbolic near the antinodal points.

Nesting refers to the situation where a single vector in the reciprocal lattice vector space (momen-
tum space) connects large patches of the Fermi surface. For the case of a half-filled Fermi surface,

the momentum vector Q⃗ = 1
a
(π, π) connects two whole arms of the Fermi surface. If there is some

scattering mechanism in the theory that connects states lying at momenta k and k+Q, there will
be terms in perturbation theory that go as

1

ξk⃗ − ξk⃗+Q⃗

(30)
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Since Q⃗ connects a large number of points on the Fermi surface, there will be many choices such

that k⃗ and k⃗ + Q⃗ lie on the Fermi surface, and are hence degenerate states. The presence of the
nesting vector Q⃗ thus leads to a very high static structure factor for such scattering processes
between degenerate states.

VI. VAN HOVE SINGULARITY: LOGARITHMIC DIVERGENCE OF THE

DENSITY OF STATES

The DOS at an energy E is given by

ρ(E) =
1

4π2

∫
S(E)

dS

|∇⃗ϵk⃗|
(31)

The integral is over the surface S(E) of constant energy E. Henceforth, for simplicity, we will
assume µ = 0 and a = 1.

Near the antinodal point (π, 0), we can approximate the dispersion as

ϵk⃗ = t
[
k2y − (π − kx)

2] (32)

Since we are integrating over a constant energy surface E, we can write

k2y − (π − kx)
2 =

E

t
= R2 (33)

We assumed here that E > 0. The hyperbolic nature of the equation suggests a parametrization
of the form

ky = R sinhϕ, π − kx = R coshϕ (34)

This allows us to parametrize the integral using just one variable ϕ. The gradient of the dispersion
is

|∇⃗ϵk⃗| =

√(
∂ϵk⃗
∂kx

)2

+

(
∂ϵk⃗
∂ky

)2

= 2t
√

(π − kx)
2 + k2y = 2tR

√
cosh2 ϕ+ sinh2 ϕ (35)

and the arc length can be written as

dS =
√

(dkx)2 + (dky)2 = Rdϕ

√
cosh2 ϕ+ sinh2 ϕ (36)

The integral can now be written purely in terms of ϕ:

ρ(E) =
1

4π2

1

2t

∫
dϕ =

1

4π2

1

2t
[ϕ1 − ϕ0] (37)

Note that we have accounted for only half of the integration space currently. To see this, consider
the case when we are integrating over the half-filled Fermi surface, so we can assume sinhϕ =
π−coshϕ. This however, would just produce the top half of the diamond, because sinhϕ is always
positive here. To get the other half, we need the other parametrization choice of

ky = −R sinhϕ, π − kx = R coshϕ (38)

Since both dS and the gradient involve only even functions, they will not be affected and the total
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integral will just be twice of what we currently have.

ρ(E) =
1

4π2

1

t
[ϕ1 − ϕ0] (39)

We now need to figure out the integration limits ϕ1 and ϕ0. Since we are integrating over the first
Brillouin zone, ky ranges from −π → π, such that ϕ ranges from

ϕ0 = sinh−1 −π
R

= − sinh−1 π

R
→ ϕ1 = sinh−1 π

R
(40)

This gives

ρ(E) =
1

2tπ2
sinh−1

√
2tπ2

E
(41)

We are interested in E → 0+, so the term in the square root will be very large. This allows us to
approximate the sinh inverse as a logarithm:

sinh−1(x) = ln
(
x+

√
x2 + 1

)
=⇒ lim

x→∞
sinh−1(x) = ln 2x (42)

For the DOS, this means

ρ(E → 0+) ∼ 1

2tπ2
ln

√
4tπ2

E
=

1

4tπ2

(
ln 4tπ2 − lnE

)
(43)

The logarithmic divergence in the density of states is visible now. The presence of a large number
of states, specially close to the Fermi surface, results in increased correlation between the electrons
and might lead to instablities because of the increased scattering near the singularity.
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